Product Code Database
Example Keywords: data and -science $67-161
   » » Wiki: Isolated Point
Tag Wiki 'Isolated Point'.
Tag

In , a point is called an isolated point of a subset (in a topological space ) if is an element of and there exists a neighborhood of that does not contain any other points of . This is equivalent to saying that the singleton is an in the topological space (considered as a subspace of ). Another equivalent formulation is: an element of is an isolated point of if and only if it is not a of .

If the space is a , for example a , then an element of is an isolated point of if there exists an around that contains only finitely many elements of . A that is made up only of isolated points is called a discrete set or discrete point set (see also ).


Related notions
Any discrete subset of Euclidean space must be , since the isolation of each of its points together with the fact that are in the means that the points of may be mapped injectively onto a set of points with rational coordinates, of which there are only countably many. However, not every countable set is discrete, of which the rational numbers under the usual Euclidean metric are the canonical example.

A set with no isolated point is said to be (every neighbourhood of a point contains other points of the set). A with no isolated point is called a (it contains all its limit points and no isolated points).

The number of isolated points is a topological invariant, i.e. if two topological spaces are , the number of isolated points in each is equal.


Examples

Standard examples
Topological spaces in the following three examples are considered as subspaces of the with the standard topology.

  • For the set S=\{0\}\cup 1,, the point 0 is an isolated point.
  • For the set S=\{0\}\cup \{1, \tfrac 1 2, \tfrac 1 3, \dots \}, each of the points is an isolated point, but is not an isolated point because there are other points in as close to as desired.
  • The set \N = \{0, 1, 2, \ldots \} of is a discrete set.
In the topological space X=\{a,b\} with topology \tau=\{\emptyset,\{a\},X\}, the element is an isolated point, even though b belongs to the closure of \{a\} (and is therefore, in some sense, "close" to ). Such a situation is not possible in a .

The Morse lemma states that non-degenerate critical points of certain functions are isolated.


Two counter-intuitive examples
Consider the set of points in the real interval such that every digit of their representation fulfills the following conditions:
  • Either x_i=0 or x_i=1.
  • x_i=1 only for finitely many indices .
  • If denotes the largest index such that x_m=1, then x_{m-1}=0.
  • If x_i=1 and i < m, then exactly one of the following two conditions holds: x_{i-1}=1 or x_{i+1}=1.
Informally, these conditions means that every digit of the binary representation of x that equals 1 belongs to a pair ...0110..., except for ...010... at the very end.

Now, is an explicit set consisting entirely of isolated points but has the counter-intuitive property that its closure is an .

Another set with the same properties can be obtained as follows. Let be the middle-thirds , let I_1,I_2,I_3,\ldots,I_k,\ldots be the component intervals of 0,1-C, and let be a set consisting of one point from each . Since each contains only one point from , every point of is an isolated point. However, if is any point in the Cantor set, then every neighborhood of contains at least one , and hence at least one point of . It follows that each point of the Cantor set lies in the closure of , and therefore has uncountable closure.


See also


External links
Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs